Safety First


Enbridge actively supports research and innovation, as we aim to adapt and harness technology to improve safety and reliability.

Enbridge is continually looking for opportunities to enhance existing technologies, and advance new ones, in the areas of design, prevention, monitoring and leak detection to keep our pipelines and distribution systems safe.

We see it as our duty to work with innovators, researchers, regulators and our industry peers to drive safety and reliability performance to new levels.

We also know that the world is looking to us and other members of the energy sector to help society make the transition to a lower-carbon future, so we are investing in alternative energy and promising innovative technologies to support that change.

Safer systems, next-generation technologies

Enbridge takes the long view in driving technology forward. We commit time, resources and dollars in the interest of making our systems safer. 

A focus on innovation

In 2018, we invested about C$14 million in technology development and innovation projects. These projects are focused on the use of advanced analytics in our pipeline and power generation businesses, renewable energy technology and enhancement of the safety, efficiency and capacity of our assets.

Our Innovation, Research and Development group has been involved in more than 130 projects in 2019 focusing on innovation to improve pipeline safety and fitness. These collaborative efforts include 43 Pipeline Research Council International (PRCI) projects with peers and external stakeholders, and 27 projects involving the Operations Technology Development (OTD) consortium.


Construction of pipeline

In 2019, we've led, sponsored or participated in more than


projects related to research, development and innovation.

Safety innovation partnerships

Our approach to safety is based on collaboration with other members of the industry as well as with regulators and first response agencies.

We don't compete when it comes to safety. We share what we develop and learn with our peers—all with the goal of protecting the public and the environment.

Enbridge stories: Innovation in action

Two workers in front of a crude storage tank

Efficiency and ELSA: Supporting the energy industry with high-tech pipeline scheduling

The life of a pipeline scheduler means fielding constant streams of information—all of them pertinent.

And up until 2017, that information was processed with . . .

“Stacks of paper,” says Josh Martin, an Integrated Projects Business Lead within Enbridge’s Liquids Pipelines group.

Enter ELSA—the Enbridge Liquids Scheduling Application—first introduced by Enbridge in early 2017 to streamline the Liquids Pipelines scheduling process.

ELSA is now used by Enbridge’s team of 60 pipeline schedulers. It gathers and processes all the factors at play, presents crude oil movement data in a user-friendly format, as close to real-time as possible, and allows schedulers to respond quicker to supply or demand disruptions.


White pipes in a tank terminal

Terminal utilization: Bypassing bottlenecks, going with the (optimal) flow

Pumps. Valves. Manifolds. Tankage. Facility piping that connects it all.

Traditionally, determining the best flow path through a crude oil tank terminal, notes Tony Khoo, is “more art than science.”

Khoo’s advanced analytics team at Enbridge is currently shining a spotlight on the science—and, with it, aiming for a data-driven solution that can benefit the Canadian energy industry.

Enbridge’s terminal utilization project has begun the creation of a “proof-of-concept” 3-D digital representation of one of our terminals—offering real-time depiction of asset utilization, commodity movement, and other salient features.



Welding's innovative 'arc' integrated into Enbridge's Line 3 Replacement Program

Talk about innovation with any welding enthusiast, and the sparks really start to fly.

“I used to work in a pipe mill. I have a welding engineering background. I’ve worked construction my whole life. I absolutely love this stuff, and sometimes I take it for granted that everyone has seen this process and knows about the advancements that have been made,” says Andy Duncan, Technical Services Manager with Enbridge’s Major Projects group.

“I’m very, very confident in saying that we are using the best available welding technology to industry,” adds Duncan, “and that we go well beyond the minimum requirements of existing codes and standards, wherever we build pipelines.”

Enbridge’s Line 3 Replacement Program (L3RP), the largest project in company history, will benefit from more than 50 years of welding engineering and pipe design innovation.



Virtual reality project goes underground for pipeline safety

Sometimes it’s hard to see the forest through the trees.

And for this particular analogy, those trees are millions of data points along Enbridge’s pipeline network—collected and reported by in-line inspection (ILI) toolsstrain gauge sensors, and LiDAR (Light Detection and Ranging) remote sensing systems.

“Enbridge is quite diligent about using overlapping inspection and prevention techniques to diagnose pipeline fitness. But the challenge lies in the fact that there is no way of quickly and effectively visualizing all of the data that’s collected,” notes Tony Khoo, manager of Enbridge’s advanced analytics team.

To save our pipeline integrity engineers countless hours in poring over reams of data, representatives of Enbridge, Microsoft and Port Coquitlam, B.C.’s Finger Food Studios went back to the innovation drawing board.

The result is a vital first step toward creating a “digital twin” for Enbridge’s vast pipeline network.



Raising the roof on crude oil storage tank safety

For nearly a full century, the floating roof has been the lynchpin of crude oil storage.

The concept hasn’t changed much. But now, a British Columbia-based company is now putting a technological tiger in the industry’s tank, so to speak.

“The first floating roof was built in 1919, and it’s actually evolved very little since then,” says Nick Tzonev, chief executive officer of Victoria’s Syscor Controls & Automation Inc. “Much of the industry’s infrastructure is getting old; a lot of tanks were built in the 1950s and 1960s, during the big terminal industry boom.”

Enter Syscor’s wireless watchdog. In 2008, Syscor unveiled its FR-Tracker technology to the crude storage industry. Using multiple wireless sensors, the FR-Tracker system offers an early warning for potential problems associated with floating tank roofs—providing 24/7 monitoring of temperature, vibration, inclination, liquid levels on deck, and potential hydrocarbon vapors.



'Cracking' the code on pipeline crack inspection tools

For a truly granular view, sometimes it helps to start with a bigger sandbox.

In spring 2017, Enbridge and NDT Global, a leading ultrasonic pipeline inspection firm, announced a multi-year project to develop a next-generation in-line inspection (ILI) tool—or robot, in NDT Global’s lexicon—that would advance crack assessment prowess in crude oil pipelines.

Teams with NDT Global and Enbridge have now developed a new technology carrier, with a functional prototype inspection tool expected to be ready for testing by fall 2018.

This new crack detection robot represents a “step change” in technological capabilities, says NDT Global’s Tom Machnik, and it’s based largely on being able to capture and analyze massive amounts of data from a pipeline’s interior.



Harnessing AI and Big Data for a green energy game-changer

Big data. Machine learning. Predictive analytics.

Enbridge, a Canadian leader in green energy investment, is using all of these elements to help optimize our wind power performance across North America.

Enbridge’s one-of-a-kind Performance Analytics and Situational Awareness (PASA) solution could be a game changer in a sector grappling with increasing maintenance costs. PASA helps optimize turbine servicing, avoid downtime, and predict mechanical issues—and could one day help ensure the viability of the wind energy industry as a whole.

“We believe the application of machine-learning techniques, as evidenced in our PASA solution, will fundamentally transform the economics and efficiency of wind power,” says Tony Khoo, Enbridge’s Manager of Advanced Analytics, whose team developed and delivered the PASA solution.


Leak detection: A ‘defense in depth’ approach

Safety is the very foundation of our business at Enbridge, and we use a multi-pronged approach to pipeline safety that includes robust inspections, maintenance and 24/7 monitoring.

On top of those multiple prevention activities, we also take an industry-leading approach to leak detection—in a variety of ways. As part of our Data, Detection and Diligence series on the @enbridge blog channel, we recently explored our various methods of leak detection, which include:


Smart Pigs, Safe Pipes: Industry-leading pipeline inspection technology

Enbridge focuses heavily on prevention to keep our crude oil pipeline network safe. In-line inspection (ILI) tools—or “smart pigs,” to use industry jargon—are highly complex pieces of machinery that use advanced imaging technology to inspect our pipes inch by inch.

Enbridge has entrusted Baker Hughes, a GE Company, with these robust ILI-based pipeline diagnoses since 1998. In that time, Baker Hughes has performed more than 400 pipeline inspections across Enbridge’s pipeline network, producing more than 70,000 kilometers’ worth of inspection data.

As part of our Smart Pigs, Safe Pipes series on the @enbridge blog channel, we recently teamed up with the experts at BHGE, the world's premier pipeline inspection company, to get a close-up look at their leading-edge technology—and the various ways it's improving safety across the pipeline industry. The series looks at:



'In-motion' X-ray exams strengthen weld safety on pipeline projects

The process is called Non-Destructive Testing. And it encourages non-linear thinking.

NDT is a wide group of analysis techniques—used in a variety of industries, including aviation, automotive, construction, transportation and energy—to evaluate the properties of a material without causing damage.

“I look at NDT as a tool box,” says Axel Aulin, Enbridge’s senior NDT specialist. “You can’t do the job with just a wrench or a hammer. You need different applications at different times.”

Enbridge recently updated its own NDT toolbox when it comes to pipeline girth weld inspections out in the field.

Starting with the Norlite project, which entered service in 2017, Enbridge has successfully tested and implemented the use of Real-Time Radiography (RTR) to inspect field girth welds—a significant step forward from traditional film-based radiographic testing (RT).


FOX-TEK Innovation

Taking 'charge' with real-time, continuous pipeline monitoring

It’s highly accurate, it’s non-intrusive, it’s continuous and it goes with the flow.

Electrically speaking, that is.

For the past decade, Electric Field Mapping (EFM) technology—developed by Toronto-based FOX-TEK Canada Inc.—has been helping to keep Enbridge’s pipeline network healthy and fit for purpose by staying “current,” in a manner of speaking.

“If you put your finger in a stream, the water goes around your fingers. And that’s essentially how our EFM technology works,” says Allen Lone, President and CEO at FOX-TEK Canada Inc., a subsidiary of Augusta Industries Inc.

“Based on a continuous EFM monitoring system, we’re measuring the minute changes in electrical current density through a segment of the pipe where our sensor array is mounted,” adds Lone. “If there are any localized changes in the pipe wall—such as metal loss due to corrosion—our EFM system will detect a change in the current density.”

For energy pipelines in particular, EFM is a complementary technology that can be used to supplement a pipeline operator’s inspection and maintenance tactics.


Wrapping up the slope friction issue

Pipelines are buried through all kinds of terrain as they crisscross North America. On rare occasions, that includes slopes that move incrementally over time – at a rate of a couple of millimeters per year.

While our pipelines are engineered to manage moving forces, where necessary, an Enbridge geohazard project recently tackled the issue of incremental slope movement.

The pragmatic solution? Wrapping the pipe with low-friction geotextile fabric, a robust weave of monofilament polypropylene yarns. And the key was using two layers, not one.


A high-fidelity approach to leak detection, incident prevention

There’s common sense. There’s the proverbial sixth sense.

And then there’s Hifi Engineering’s High Fidelity Dynamic Sensing (HDS) technology, which uses multiple senses—sense of sound, sense of touch—in addition to its optical-based backbone.

Hifi, based in Calgary, is working with Enbridge Inc. and TransCanada Corporation as part of a pipeline industry partnership to test and enhance its HDS system.

And in September 2017, based on its promising next-generation fiber optic sensing technologies, Hifi was named as the first funding recipient for the Alberta Small Business Innovation and Research Initiative (ASBIRI), offered by Alberta Innovates.


Fiber optics and finesse: Leak detection initiative goes deep

It is, potentially, a big step forward for pipeline water crossing safety. You might even say 966 big steps forward.

In the fall of 2016, during the construction of our Norlite Pipeline northeast of Edmonton, Alberta, Enbridge’s construction and leak detection crews—along with representatives of Banister Pipelines, Michels Canada and Chemco—collaborated on a technological breakthrough that may one day add another layer of safety in the pipeline industry.

Using a Horizontal Directional Drilling (HDD) procedure—in this case, drilling a parabolic tunnel deep beneath the North Saskatchewan River—crews installed 966 metres, or 0.6 miles, of pipe and fiber optic cable.

That’s more than seven Canadian Football League fields, including end zones—and it’s the longest successful HDD installation, to date, involving a steel pipe and a fiber cable.


An early-warning system for pipeline strikes

People don’t always know what’s below. That’s why we want to be aware of what’s going on beneath the surface.

Even with our robust Call 811 and Call/Click Before You Dig public awareness campaigns, the most common source of natural-gas pipeline damage is accidental third-party strikes.

Since 2014, Enbridge Gas has been working with NYSEARCH, a collaborative research-and-development organization representing 25 natural gas utilities, on a right-of-way intrusion detection project. A project team has been evaluating damage prevention systems from three vendors through a series of blind tests, involving excavation machinery, manual digging, equipment activity and vehicle traffic.



A 'big leap ahead' on pipeline inspection tools

It’s about safety, it’s about reliability—and, ultimately, it’s about clarity.

“Think of this as investing in the creation of the 4K television, when 1080p high-definition isn’t good enough anymore,” says Trevor Grams, Enbridge’s Director of Research and Development.

In April 2017, Enbridge and NDT Global, a leading ultrasonic pipeline inspection firm, announced a multi-year project to develop a next-generation inspection tool—one that will advance crack assessment capabilities in crude oil and liquids pipelines.


Detecting corrosion under insulation with the bracelet probe

It’s called the bracelet probe, and it has the potential to save plenty of bling.

The Russell NDE Bracelet Probe inspection tool, developed by Edmonton-based Russell NDE Systems Inc., uses an electromagnetic induction technique to inspect pipeline corrosion under insulation—and is now used by pipeline inspection companies, and major upstream outfits, in countries around the world. At Enbridge, we’re working to formally implement and adopt the bracelet probe as a proven inspection method.


Smart Ball

Ultra-sensitive SmartBalls ‘listen’ for tiny leaks

A free-swimming tool with a foam shell, a SmartBall consists of an aluminum core with an extremely sensitive microphone, called a hydrophone, that takes advantage of fluids’ superiority as an acoustic coupling medium. Usually about 18 inches in diameter, a SmartBall can travel within a pipeline for up to 18 days while collecting stress, pressure, temperature and other data, and is capable of locating pinhole leaks—typically within six feet of their location.

Enbridge tested the SmartBall technology, which was developed by Calgary-based Pure Technologies Ltd., over a two-year period—and, based on need, we now use the devices along selected segments of our crude oil pipeline network.


Fiber optics on the Flanagan South line

It’s a groundbreaking research project, and it’s now entered the soil of the Show-Me State.

After simulating pipeline products, soil characteristics, and other environmental factors with the large-scale ELDER apparatus, and gleaning some invaluable test results in an Edmonton laboratory, we’ve taken this project outside.

Using fiber optic cable alongside a 20-mile stretch of Enbridge’s newly built Flanagan South pipeline in central Missouri, this $4-million pilot project aims to land on a leak detection system that can quickly and reliably identify very small leaks, provide an accurate leak location, and provide incremental benefit to our other leak detection systems.


Safety - inline inspection tool

A one-of-a-kind, ‘dual-diameter pig’

There’s building a better mousetrap. And then there’s building a better pig.

At Enbridge, in-line inspection tools, otherwise known as “smart pigs” in the industry, are sent through our pipelines at regular intervals, inspecting the pipe inch by inch. But how do you handle inspections for a unique line like Enbridge’s Line 4, which consists of 28 segments of varying sizes – some of them 36 inches in diameter, and some 48 inches?

You create a better pig. An ultrasonic pig. A dual-diameter pig.


Electromagnetic examinations for pipelines

Internal pipeline inspections may be moving from shear waves to the next wave.

Electromagnetic acoustic transducer (EMAT) technology is an ultrasonic testing technique that can be used to measure wall thickness, detect small cracks, and identify irregularities in pipeline coatings—and, potentially, be used to detect and measure cracks within deformations.

Up until recently, EMAT inspection tools have been used primarily for gas pipelines. Enbridge’s EMAT validation project is currently testing this technology for potential application along our crude oil network.


Magnetic tomography: A ‘non-invasive’ stress test

If a picture is worth a thousand words, these images may prove invaluable to pipeline diagnostics.

Since 2002, Russia-based Transkor has been detecting potential stress points in pipelines worldwide, using its proprietary magnetic tomography method (MTM). An MTM inspection uses the electromagnetic properties of steel to create a remote 3-D image of a pipe – identifying the location of potential stress concentrations and associated pipeline features, which may require further examination.

And MTM technology could be a game changer for the way we inspect station piping at Enbridge.


Taking the aerial approach to leak detection research

Pipeline safety research is about to go airborne. In May 2015, Enbridge Pipelines Inc., TransCanada Corporation, and Kinder Morgan Canada announced a joint industry partnership to evaluate aerial-based leak detection technologies, and their possible application on crude oil and hydrocarbon liquids pipelines.

This project will test the boundaries of scientific innovation—because, to this point, the available technologies have not been tested on such a large scope, or such a fine detail.